

	(Unit)	SPITFIRE	HURRICANE	BLENHEIM	TIGER MOTH	BF.109	BF.110	JU-87B-2	JU-88	HE-111	G.50	BR.20M
		Mk la 100 oct	Mk IA Rotol 100oct	Mk IV	DH.82	E-4	C-7	STUKA	A-1	H-2	SERIE II	
					TEM	PERATURES						
Water Rad Min	Deg C	60	60	-	-	40	60	38	40	38	-	-
Max Oil Rad (OUTBOUND) Min	Deg	115	115	40		100	90	95	90	95	50	50
Max	Deg C	40 95	40 95	40 85	-	40 105	40 85	30 95	40 80	35 95	50 90	50 90
Cylinder Head Temp Min Max	Deg C	-	-	100 235	-	-	-	-	-	-	140 240	140 240
					ENGIN	IE SETTING	S					
Takeoff RPM	RPM	3000	3000	2600 FINE	2350	2400	2400	2300	2400	2400	2520	2200
Takeoff Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	+6	+6	+9 BCO ON	See RPM Gauge	1.3	1.3	1.35	1.35	1.35	890	820 BCO ON
Climb RPM	RPM	2700	2700	2400 COARSE	2100	2300 30 min MAX	2300 30 min MAX	2300 30 min MAX	2300 30 min MAX	2300 30 min MAX	2400 30 min MAX	2100 30 min MAX
Climb Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	+6	+6	+5	See RPM Gauge	1.23	1.2	1.15	1.15	1.15	700	740
Normal Operation/Cruise RPM	RPM	2700	2600	2400 COARSE	2000	2200	2200	2200	2100	2200	2100	2100
Normal Operation/Cruise Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	+3	+4	+3.5	See RPM Gauge	1.15	1.15	1.1	1.1	1.10	590	670
Combat RPM	RPM	2800	2800	2400 COARSE	2100	2400	2400	2300	2300	2300	2400	2100
Combat Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	+6	+6	+5	See RPM Gauge	1.3 5 min MAX	1.3 5 min MAX	1.15	1.15	1.15	700	740
Emergency Power/ Boost RPM @ km	RPM	2850 5 min MAX	2850 5 min MAX	2600 COARSE 5 min MAX	2350	2500 1 min MAX	2400 5 min MAX	2300 1 min MAX	2400 1 min MAX	2400 1 min MAX	2520 3 min MAX	2200 5 min MAX
Emergency Power / Boost Manifold Pressure @ Sea Level	UK: PSI GER: ATA ITA: mm HG	+12 BCO ON	+12 BCO ON	+9 BCO ON	See RPM Gauge	1.40 1 min MAX	1.3 5 min MAX	1.35 1 min max	1.35 1 min max	1.35 1 min max	890 3 min max	820 BCO ON 5 min MAX
Supercharger Stage 1 Operation Altitude	UK: ft GER: M	-	-	-	-	-	-	0 1500	0 1220	0 1220	-	-
Supercharger Stage 2 Operation Altitude	UK: ft GER: M ITA: M	-	-	-	-	-	-	1500+ (AUTO/MAN MODES)	1220+	1220+	-	-
Landing Approach RPM	RPM	3000	3000	2400	As required	2300	2300	2000	2100	2300	2400	2200
Landing Approach Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	As required	As required	As required	See RPM Gauge	As required	As required	As required	As required	As required	As required	As required
Notes		operation. Use "Le	xture for normal ean" mixture for fuel RPM under 2600 & rer.	Boost Cut-Out Override (BCO) during takeoff often required	Min Oil Press: 35 psi Max Oil Press: 45 psi			No Abrupt Throttling	Eng. very sensitive to ata/rpm	Eng. very sensitive to ata/rpm		Boost Cut-Out Override (BCO) during takeoff often required
					AI	RSPEEDS						
Takeoff – Rotation		120	120	110	55	180	190	170	185	150	170	175
Max Dive Speed	UK: mph	420	390	260	160	750	620	720	675	600	410	600
Optimal Climb Speed	-	165	175	135	66	240	270	215	250	240	240	210
Landing – Approach	GER/ITA: km/h	160	160	140	55	200	220	170	200	200	175	175
Landing – Touchdown	Kiny n	90	90	85	50	160	180	150	180	140	160	160

PERFORMANCE SHEET

TABLE OF CONTENT – TIGER MOTH

- PART 1: AIRCRAFT HISTORY
- PART 2: AIRCRAFT VARIANTS
- PART 3: AIRCRAFT & COCKPIT FAMILIARIZATION
- PART 4: THE CONTROLS
- PART 5: WEAPONS AND ARMAMENT
- PART 6: TAKEOFF
- PART 7: LANDING
- PART 8: ENGINE MANAGEMENT
- PART 9: AIRCRAFT PERFORMANCE
- PART 10: P-8 COMPASS TUTORIAL

The **de Havilland DH.82 Tiger Moth** is a 1930s biplane designed by Geoffrey de Havilland and was operated by theRoyal Air Force (RAF) and others as a primary trainer. The Tiger Moth remained in service with the RAF until replaced by the de Havilland Chipmunk in 1952, when many of the surplus aircraft entered civil operation. Many other nations used the Tiger Moth in both military and civil applications, and it remains in widespread use as a recreational aircraft in many countries.

One distinctive characteristic of the Tiger Moth design is its differential aileron control setup. The ailerons (on the lower wing only) on a Tiger Moth are operated by an externally mounted circular bellcrank, which lies flush with the lower wing's fabric undersurface covering.

This circular bellcrank is rotated by metal cables and chains from the cockpit's control columns, and has the externally mounted aileron pushrod attached at a point 45° outboard and forward of the bellcrank's centre, when the ailerons are both at their neutral position. This results in an aileron control system operating, with barely any travel down at all on the wing on the outside of the turn, while the aileron on the inside travels a large amount upwards to counteract adverse yaw.

22222 244

The DH.82 is still occasionally used as a primary training aircraft, particularly for those pilots wanting to gain experience before moving on to other tailwheel aircraft, although most Tiger Moths have a skid. Many are now employed by various companies offering trial lesson experiences. Those in private hands generally fly far fewer hours and tend to be kept in concours condition. The de Havilland Moth club founded 1975 is now a highly organized owners' association offering technical support and focus for Moth enthusiasts.

	(Unit)	DH.82A TIGER MOTH II
TEMPER	ATURES	
Water Rad Min Max	Deg C	N/A
Oil Rad (OUTBOUND) Min Max	Deg C	N/A
ENGINE SETTING	IS & PRO	PERTIES
Engine & Fuel grade		De Havilland Gypsy Major I 73 octane fuel
Takeoff RPM	RPM	2350
Takeoff Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	See RPM Gauge
Climb RPM	RPM	2100
Climb Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	See RPM Gauge
Normal Operation/Cruise RPM	RPM	2000
Normal Operation/Cruise Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	See RPM Gauge
Combat RPM	RPM	2100
Combat Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	See RPM Gauge
Emergency Power/ Boost RPM @ km	RPM	2350
Emergency Power / Boost Manifold Pressure @ Sea Level	UK: PSI GER: ATA ITA: mm HG	See RPM Gauge
Landing Approach RPM	RPM	2350
Landing Approach Manifold Pressure	UK: PSI GER: ATA ITA: mm HG	See RPM Gauge
Notes and Peculiarities		Min Oil Press 35 psi Max Oil Press 45 psi

CREW MEMBERS

FLIGHT INSTRUCTOR (CO-PILOT)

STUDENT PILOT

and the state

HER LIGHT

3: AIRCRAFT & COCKPI FAMILIARIZATION PART

T & COCKPI ATION : AIRCRAF AMILIARIZ \mathcal{C} PART

DH.82 TIGER MOTH

FRONT SEAT

INSTRUCTOR

THTL 100% MIX 100% IF YOU ARE FLYING THE TIGER MOTH SOLO, DO NOT GO INTO THE INSTRUCTOR SEAT WHILE YOU ARE IN THE AIR: THE AI WILL SIMPLY CRASH YOU INTO THE GROUND.

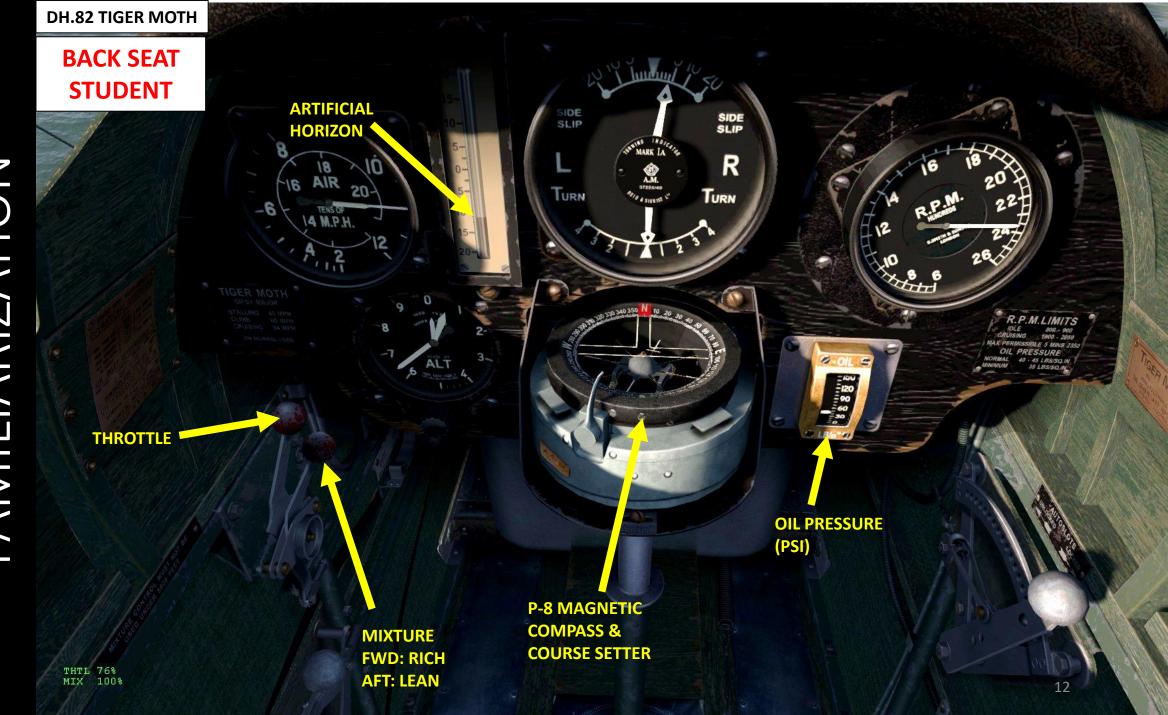
IF YOU WANT TO FLY WITH SOMEONE ONLINE, DO THE FOLLOWING:

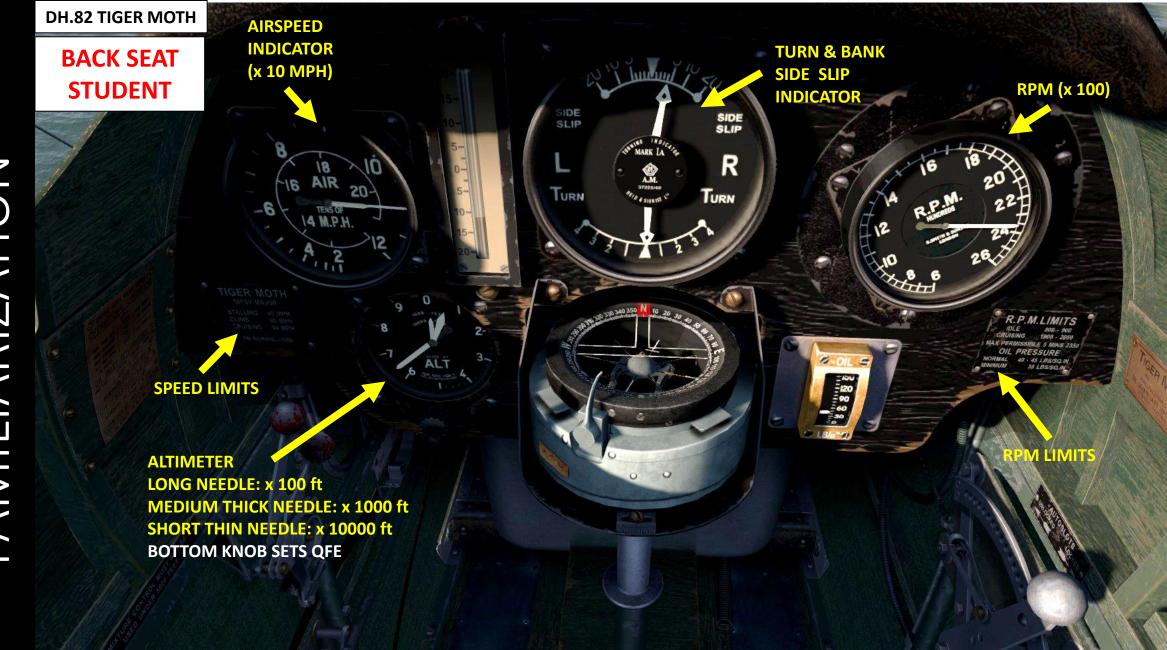
1) STUDENT PILOT SPAWNS IN A TIGER MOTH.

A CONTRACT OF LE VERSION OF A CONTRACT

- 2) INSTRUCTOR CLICKS ON THE FACTION FLAG TO SELECT A MULTIPLAYER SLOT.
-) INSTRUCTOR SELECTS CO-PILOT SEAT, CLICKS FLY AND SPAWNS.

1 3 3


Regiment	Aircraft	Seat	User
	Spitfire I (100oct)		
o. 218 Squadron RAF	Spitfire IIa		
o. 218 Squadron RAF	Spitfire IIa		
o. 218 Squadron RAF	Tiger Moth	Pilot	
218 Squadron RAF	Tiger Moth	Co-Pilot	
			GTF
Alles Very			Lavi


Start Recording Options

Fly

Plane

T & COCKPI ATION 3: AIRCRAFT FAMILIARIZ/ \mathbf{C} PAR⁻

THTL 76% MIX 100%

PART 3: AIRCRAFT & COCKPIT FAMILIARIZATION

DH.82 TIGER MOTH

BACK SEAT STUDENT

ELEVATOR TRIM

ELEVATOR TRIM

-6

2

T & COCKPI ATION **ARI** Y \mathbf{C} AR'

DH.82 TIGER MOTH INTERESTING FACT:

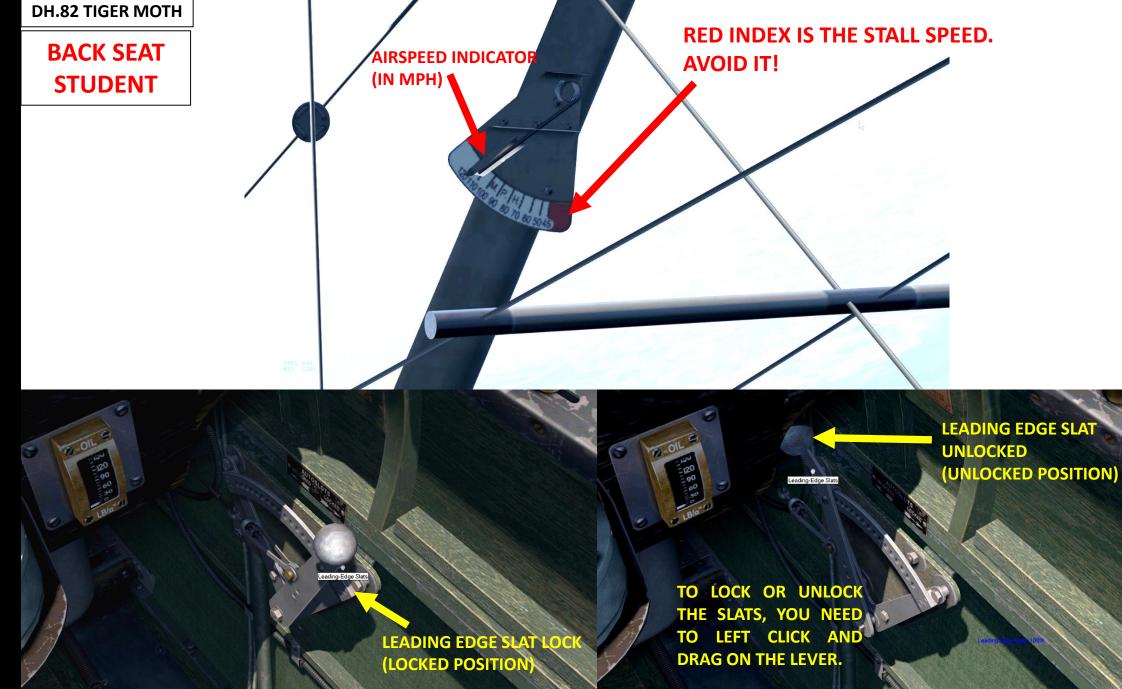
It seems that the fuel gauge for the Tiger Moth didn't have any graduations. Therefore, the pilot would simply look at the gauge and guess how much fuel was left. The picture on the right shows a gauge with 15 liters left. Since there are no graduations or units on the gauge, my educated guess is that the label displayed is the fuel quantity in liters since the Russian developers like to work with the metric system.

FUEL GAUGE IN-GAME CAPACITY: 60 L (13 GAL) REAL-LIFE CAPACITY: 83 L (19 GAL)

BACK SEAT

STUDENT

Fuel Reserve (61)



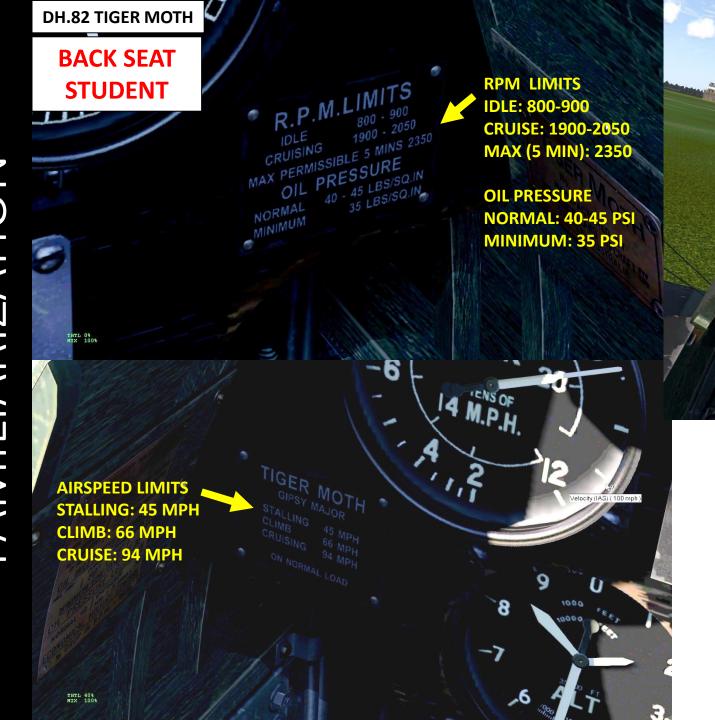
T & COCKPIT ZATION 3: AIRCRAFT FAMILIARIZ/ \mathbb{C} PART

DH.82 TIGER MOTH

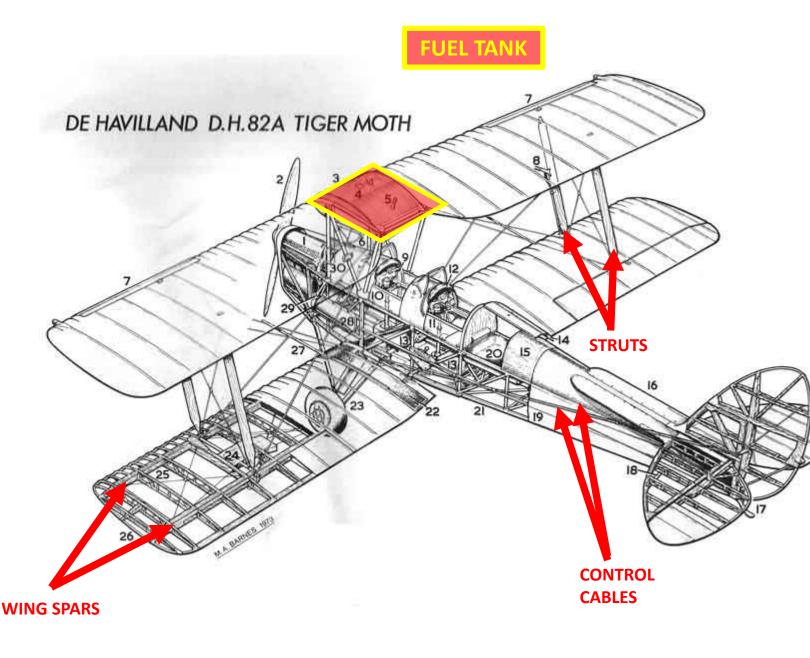
BACK SEAT 1000 1010 1020 1 **STUDENT** Fuel Cock #1 - Toggle **FUEL COCK**

3: AIRCRAFT & COCKPIT FAMILIARIZATION \bigcirc PART

SLAT (DEPLOYED)


SLAT (DEPLOYED)

LEADING EDGE SLATS ARE AUTOMATICALLY DEPLOYED WHEN YOU ARE TURNING AT LOW SPEEDS. HOWEVER, YOU NEED TO MAKE SURE THAT THE SLATS ARE UNLOCKED. IF THEY ARE LOCKED, THE SLATS WILL NOT DEPLOY.


3: AIRCRAFT & COCKPIT FAMILIARIZATION $\left| - \right|$ PART

COCKPI ON ATI ∞ 3: AIRCRAFT FAMILIARIZ/ \mathcal{C} PART

CRITICAL COMPONENTS

- 1. D.H. Gipsy Major I Engine
- 2. Fixed Pitch Wooden Propellor
- 3. Fuel Tank (19 gallons)
- 4. Fuel Filler Point
- 5. Fuel Contents Gauge
- 6. Fuel Supply Pipe
- 7. Automatic Slats
- 8. Pitot Head
- 9. Intercom. Speaking Tube
- 10. Hinged Cockpit Side Panels
- 11. Dual Flying Controls
- 12. Sponge Rubber Padding
- 13. Welded Aluminium Seats
- 14. Luggage Locker Access Door
- 15. Plywood Decking
- 16. Anti-Spin Strakes
- 17. Steerable Tail Skid
- 18. Tailplane Bracing Tube
- 19. Fabric Covering
- 20. Luggage Locker
- 21. Welded Steel Tubing
- 22. Walkway
- 23. Divided Axle Type Undercarriage
- 24. Aileron Sprocket Housing
- 25. Spruce Spars and Ribs
- 26. Light Alloy Tip
- 27. Bracing Wire Spreader Bars
- 28. Oil Tank (2.1 gallons)
- 29. Oil Tank Filler
- 30. Rear View Mirror ₂₁

The system used for most British aircraft flying in the Battle of Britain was rather uniform regardless of plane type or squadron.

Tail Number. Usually a single-character letter from A to Z. Numbers entered into the Tail Number field will be translated into a corresponding letter, such as 2 into B, 11 into K, etc.

The only exception is the Tiger Moth when assigned to the London School of Flying regiment. In this case the aircraft code will consist of three letters.

Serial Number. Usually a five-character string starting with a letter and followed by four numbers.

Some Examples (symbols in **bold** can be set by the player, symbols in *italics* are automatically set by Cliffs of Dover)

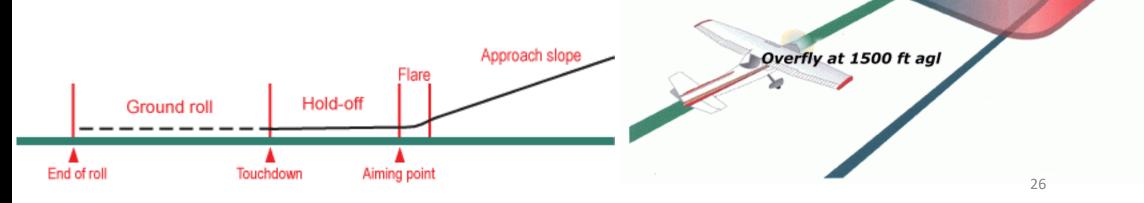
RAF

Plane	Squadron	Tactical #	Serial #
Hurricane Mk I	No. 151 Squadron	DZ- E	L1754
Hurricane Mk I	No. 312 Squadron	DU- J	L1926
Spitfire Mk I	No. 74 Squadron	ZP- J	K9867
Spitfire Mk II	No. 41 Squadron	EB- Z	P7666
Blenheim Mk IV	No. 40 Squadron	BL- V	R3612
Short Sunderland	No. 201 Squadron	ZM - \mathbf{Q}	T9087

DE HAVILLAND DH.82A TIGER MOTH II

DESCRIPTION	MAPPED TO	ESSENTIAL / NON-ESSENTIAL
Wheel Chocks		ESSENTIAL
View-Position #1, # 2	L_ALT+1, L_ALT+2	ESSENTIAL
Next Manned Position (Cycles through air crew)	С	ESSENTIAL
course setter - increase	NUMPAD + (CUSTOM)	CLICKABLE IN COCKPIT
course setter - decrease	NUMPAD - (CUSTOM)	CLICKABLE IN COCKPIT
toggle selected engine (ignition)	"I" by default	ESSENTIAL
directional controls (ailerons, elevators, and rudder)	Joystick & Rudder Pedal axes	ESSENTIAL
Trim controls (elevator)	Joystick hat switch	ESSENTIAL
Field of View + (allows you to zoom out)		ESSENTIAL
Field of View – (allows you to zoom in)		ESSENTIAL
throttle	Throttle axis	ESSENTIAL
toggle canopy/hatch		ESSENTIAL
increase mixture	+	ESSENTIAL
decrease mixture	-	ESSENTIAL
bail out		ESSENTIAL
Toggle Independent Mode (allows you to use/hide mouse cursor and take control of your gun)	F10	ESSENTIAL
Deploy / Retract Leading Edge Slats (Lock)		CLICKABLE IN COCKPIT

The Tiger Moth was a trainer: not a fighter. There are no weapons on this plane in the current version of the game.


NOTE: This procedure is NOT the real-life start-up procedure, it has been simplified in the sim.

- 1. Open fuel cock (ON)
- 2. Ensure that mixture is set to fully rich.
- 3. Crack throttle half an inch forward.
- 4. Turn both magnetos ON
- 5. Make sure your propeller is clear ("Clear prop!")
- 6. Engine ignition! (press "I" by default)
- 7. Wait for oil pressure to reach at least 35 psi.
- 8. Taxi to the runway.

- 9. Make sure you are facing yellow panels on the runway. This means you are facing the right direction for takeoff.
- 10. Perform last takeoff checks: Hatch closed, good mixture, and good oil pressure.
- 11. Gradually throttle up. Compensate for engine torque and wind using right aileron and rudder pedals to keep the aircraft straight. Slightly push the control column forward to lift the tail.
- 12. Rotation is at 55 mph.
- 13. Unlock automatic leading edge slats and set RPM to 2100 max for climb.

- 2. RPM set as required to maintain speed.
- 3. You do not need to deploy your landing gear: it is fixed! ③
- 4. Cut throttle and try to keep your nose pointed to the end of the runway.
- 5. Touchdown at 50 mph in a 3-point landing. crosswind leg
- 6. Stick fully back.
- 7. There are no brakes on the Tiger Moth. Just cut throttle until you come to a stop.

Upwind leg

Downwind leg 1000 ft agl Flare

Final Approach

Base leg

S: ENGINE AGEMENT ∞ ART A AAN,

The **de Havilland Gipsy Major** or **Gipsy IIIA** is a four-cylinder, air-cooled, inline engine used in a variety of light aircraft produced in the 1930s, including the famous Tiger Moth biplane. Many Gipsy Major engines still power vintage aircraft types worldwide today. The engine was a slightly modified Gipsy III, which was effectively a de Havilland Gipsy engine modified to run inverted so that the cylinders pointed downwards below the crankcase. This allowed the propeller shaft to be kept in a high position without having the cylinders blocking the pilot's forward view over the nose of the aircraft.

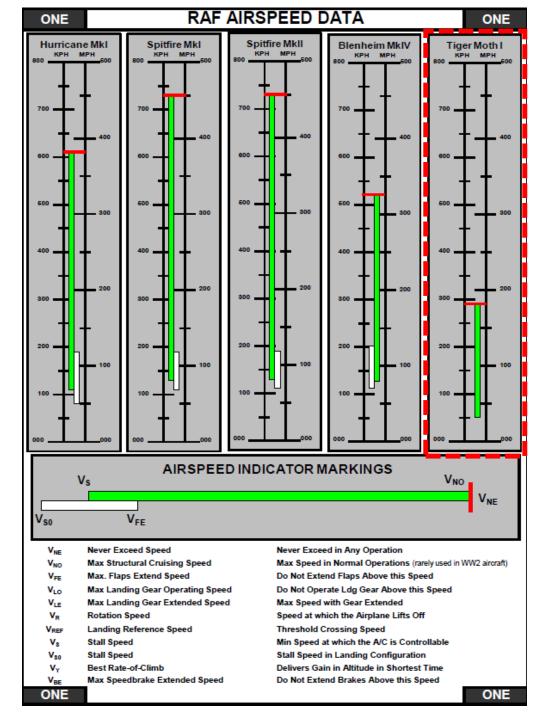
One initial disadvantage of the inverted configuration was the high oil consumption (up to four pints per hour) requiring regular refills of the external oil tank, this problem improved over time with the use of modified piston rings. The advent of World War II cut short all civilian flying and after the war de Havilland was too busy concentrating on jet engines to put much energy into its piston engines. The Gipsy did not go without a fight though. In Canada the Gipsy Major was the engine of choice for the DHC1 Chipmunk trainer, which later replaced the Tiger Moth in the RAF. By that time however, the Gipsy Major was eclipsed by the Blackburn Cirrus Major in Britain and the American Lycoming and Continental horizontally opposed engines abroad (in a twist of irony, the Blackburn itself was based on Frank Halford's old ADC Cirrus engine of which Blackburn had bought the licence in 1934). In its final supercharged form, the Gipsy Major used in helicopter applications 2^{28}

ENGINE ∞ AN

ENGINE MANAGEMENT IN THE TIGER MOTH IS VERY SIMPLE. YOU JUST NEED TO CONTROL YOUR THROTTLE AND MONITOR YOUR RPM. THE PROPELLER HAS A FIXED PITCH, AND THERE ARE NO WATER RADIATOR CONTROLS

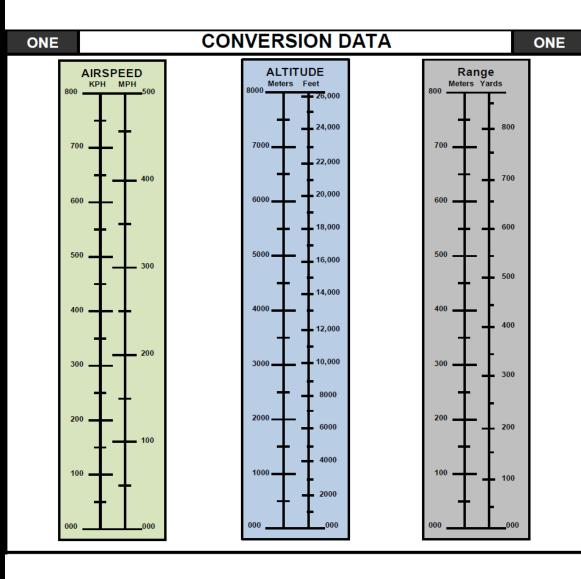
> RPM LIMITS IDLE: 800-900 CRUISE: 1900-2050 MAX (5 MIN): 2350

OIL PRESSURE NORMAL: 40-45 PSI MINIMUM: 35 PSI



	FOUR	ENGINES IN CLIFFS OF DOVER FOUR				
		Mixture Control				
ī	Engine	Operation				
	Gypsy Major	Mixture Lever in rear cockpit has 2 operating positions only: RICH and WEAK. The mixture should be set to RICH at all times under 5000 feet. Above 5000 feet, mixture ajustment should not cause a drop in RPM.				
	Merlin II - XII	Mixture Lever has 2 operating positions only: RICH (NORMAL) and WEAK. An interlocking arrangement returns the mixture control to RICH when the throttle is closed. Note: Mixture Control moves AFT for RICH and FORWARD for WEAK.				
	Mercury XV	Mixture Lever has 2 operating positions only: RICH (NORMAL) and WEAK. An interlocking arrangement returns the mixture control to RICH when the throttle is closed. Note: Mixture Control moves AFT for RICH and FORWARD for WEAK.				
	DB 601 A - A1 The DB 601 Series engines are Direct Fuel Injection engines and do not have a pilot selectable mixture control.					
	Jumo 211 B/D The Jumo 211 B/D Series engines are Direct Fuel Injection engines and do not have a pilot selectable mixture control.					

AIRSPEEDS							
Takeoff – Rotation		50-55					
Max Dive Speed	UK:	160					
Optimal Climb Speed	mph GER/ITA: km/h	66					
Landing – Approach		55					
Landing – Touchdown		50					

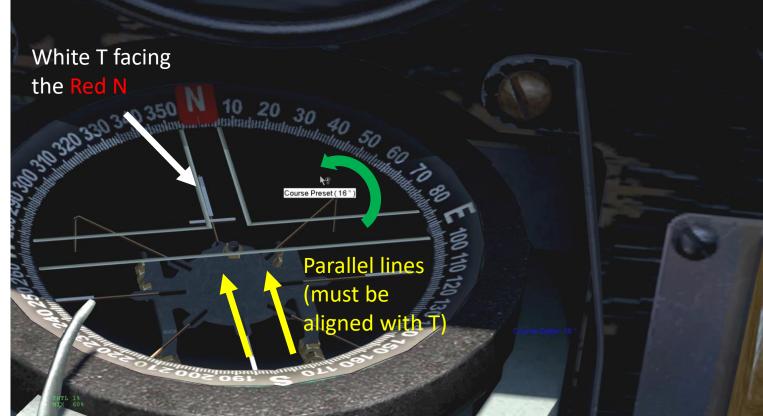

- The aircraft is quite easy to fly and very forgiving, however it only has ailerons on the bottom wing so its roll rate is not quite as quick as other biplane aircraft.
- For more information on either aircraft or engine performance, consult the 2nd Guards Composite Aviation Regiment Operations Checklist. It is a fantastic resource (link below).

https://drive.google.com/open?id=0BuSpZROuEd3NGN4c0JRNHJpYkk&authuser=0

ONE			Tiger	Moth			ONE
Aircra	Aircraft Type		Engine & Prop		Reference		
Tiger l	Moth II		lajor / FP	73 Oct	Pilot's Notes: Feb 1944		
		A	IRSPEED L		NS		
	Design Speeds						
V _{NE}	Never Excee			180	Never Exceed in		
V _{FE}		xtend Speed		NA		laps Above this	-
V _{LO}	-	Gear Operat		NA	Do Not Operate	Ldg Gear Above	this Speed
VLE	Max Landing	Gear Extend	ed Speed	NA	Max Speed with	Gear Extended	
V _R	Rotation Spe			NA	Speed at which	the Airplane Lifts	Off
V _{REF}		erence Speed		55	Threshold Crossing Speed		
Vs	Stall Speed -	Engine On		30	Min Speed at which the A/C is Controllable		
Vs	Stall Speed -	Engine Off		40	Stall Speed in Landing Configuration		
V _Y	Best Rate-of-			66	Delivers Gain in Altitude in Shortest Time		
V _{BE}	BE Max Speedbrake Extended Speed			NA	Do Not Extend Brakes Above this Speed		
		RSPEED I	NDICATOR		NG RANG	S	
ASI MA	ASI MARKING MPH Range		Range		Descr	iption	
White	e Arc	NA		Full Flap Operating Range. Lower Limit is Max. Weight $V_{\rm S0}$. Upper Limit Max Speed w/Flaps Extended.			eight V _{so} .
Gree	n Arc	30 - 180 MPH		Normal Operating Range. Lower Limit is Max. Weight $V_{\mbox{\scriptsize S}}$. Upp limit Is Max Structural Cruising Speed.			ight V _S . Upper
Red	Line	180 MPH		Maximum Speed for ALL operations.			
		LIMITING	OPERATI	ONAL CON	NDITIONS		
Condition	Full Throttle	Max Climb	Norm Climb	Max Cruise	Norm Cruise	Max Dive	
Limit	5 min	30 min	Cont	30 min	Cont	20 secs	73 Octane
RPM	2350	2100	2050	2100	1950	2200	75 Octane
Mixture		Rich	Setting to be u	sed below 5000	feet.		
Oil Dry	essure	Emer Mir	n = 30 PSI			Min = 30° C	Max = 80° C
OILPR	cooure	Normal = 40 - 45 PSI		Oil Temperature		Emergency	Max = 90° C

<RMANC Ř A • • 6 PERF $\dot{\mathbf{C}}$ \triangleleft D'

Temperature		Altitude Above Sea Level		Atmospheric Pressure			Mach
F	°C	feet	meters	inches Hg	mm Hg	psia	mph
i9	15	SL	0	29.92	760	14.70	761
5	13	1000	305	28.86	733	14.17	758
2	11	2000	610	27.82	706	13.67	755
8	9	3000	914	26.82	681	13.17	752
.5	7	4000	1219	25.84	656	12.69	750
1	5	5000	1524	24.90	632	12.23	748
8	3	6000	1829	23.98	609	11.78	745
4	1	7000	2134	23.09	586	11.34	742
1	-1	8000	2438	22.22	564	10.92	740
27	-3	9000	2743	21.39	543	10.51	736
3	-5	10000	3048	20.58	523	10.10	734
5	-15	15000	4572	16.89	429	8.29	720
13	-25	20000	6096	13.75	349	6.75	706
31	-35	25000	7620	11.10	282	5.45	693

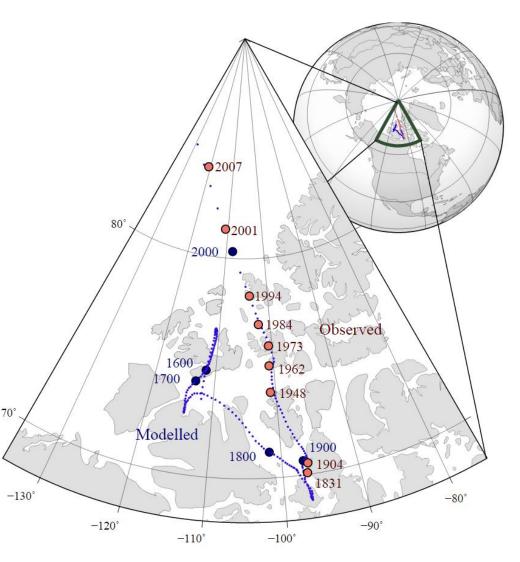

P-8 COMPASS TUTORIAL

- Using the magnetic compass is quite useful to know where you are going.
- Unlike modern British fighters like the Spitfire and the Hurricane, the Tiger Moth is not equipped with a directional gyro. What you have instead is a simple compass indicating magnetic north with a course setter allowing you to give you a reference heading (that you set) to follow.
- The magnetic compass is slow to respond after violent manoeuvers. This is one of the real life drawbacks of this system.

P-8 MAGNETIC COMPASS

The white T indicates magnetic north. You can use the course setter to help you reach a certain heading. For that, you need to deduce your geographical heading based on your magnetic heading (shown by compass). Here is an example:

- You want to go to a geographic heading of 006. You need to take into account magnetic declination. This means that we want to go to a magnetic heading of 006 + 010 degrees = 016
- 2) Set the course setter to 016 (magnetic heading). Steer the aircraft until the white T is facing the red N and is parallel to it.
- 3) When you are properly aligned (as shown on following picture), this means that you are on course. You are heading towards a REAL geographical heading of 006 by following a magnetic heading of 016.



About Magnetic Declination

The direction in which a compass needle points is known as magnetic north. In general, this is not exactly the direction of the North Magnetic Pole (or of any other consistent location). Instead, the compass aligns itself to the local geomagnetic field, which varies in a complex manner over the Earth's surface, as well as over time. The local angular difference between magnetic north and true north is called the magnetic declination. Most map coordinate systems are based on true north, and magnetic declination is often shown on map legends so that the direction of true north can be determined from north as indicated by a compass.

This is the reason why in Cliffs of Dover, the magnetic compass needs to be "adjusted" to take into account this magnetic declination of the magnetic North pole (which is actually modelled in the sim, which is pretty neat).

In 1940, the magnetic declination required an adjustment of 10 degrees and 8 minutes. We round that to 10 deg.

The movement of Earth's north magnetic pole across the Canadian arctic, 1831–2007₃₆

